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Summary: Background. The characteristic voice quality of a speaker conveys important linguistic, paralinguistic,
and vocal health-related information. Pitch strength refers to the salience of pitch sensation in a sound and was re-
cently reported to be strongly correlated with the magnitude of perceived breathiness based on a small number of voice
stimuli.
Objective. The current study examined the relationship between perceptual judgments of breathiness and computa-
tional estimates of pitch strength based on the Aud-SWIPE (P-NP) algorithm for a large number of voice stimuli (330
synthetic and 57 natural).
Methods and Results. Similar to the earlier study, the current results confirm a strong relationship between esti-
mated pitch strength and listener judgments of breathiness such that low pitch-strength values are associated with voices
that have high perceived breathiness. Based on this result, a model was developed for the perception of breathy voice
quality using a pitch-strength estimator. Regression functions derived between the pitch-strength estimates and percep-
tual judgments of breathiness obtained from matching task revealed a linear relationship for a subset of the natural stimuli.
We then used this function to obtain predicted breathiness values for the synthetic and the remaining natural stimuli.
Conclusions. Predicted breathiness values from our model were highly correlated with the perceptual data for both
types of stimuli. Systematic differences between the breathiness of natural and synthetic stimuli are discussed.
Key Words: Listener perception–Breathiness–Matching task–Pitch strength–Aud-SWIPE (P-NP).

INTRODUCTION

Auditory perceptual evaluation of dysphonic voice quality is one
of the most common and valuable clinical tools for determin-
ing severity of voice disorders and measuring treatment outcomes.
Terminologies such as “breathiness,” “roughness,” and “strain”
are often used to represent perceptions of dysphonic voice quality
and are widely used in standardized voice assessment such as
Grade, Roughness, Breathiness, Asthenia, Strain1 and Consen-
sus Auditory-Perceptual Evaluation of Voice.2 The present study
will specifically focus on the development of a model to quan-
tify listener perception of breathiness, a quality resulting from
an incomplete glottal closure resulting in an audible air escape.2

Although listener judgments of breathiness are an integral part
of voice assessment, there have been persistent concerns re-
garding their reliability and validity.3 Many acoustic measures
such as signal-to-noise ratio (SNR), relative amplitude of first
harmonic, and spectral slope have been developed to quantify
breathiness in an objective manner.4–8 These acoustic measures
often reflect the underlying physiology of modifications in the
glottal area and in glottal flow.9 Past research designed to es-
tablish a relationship between the vocal acoustic signal and the
perception of breathiness has produced highly inconsistent
results.10 The poor correspondence between the acoustic mea-
sures and the listener judgments of breathiness might be attributed

to the assumption of a linear relationship between acoustic and
perceptual variables. Over the past decade, it has been shown
that the relationship between a physical stimulus (dysphonic voice
sample) and its perceptual attributes is often nonlinear, yet can
be successfully described by analytical models that include many
of the nonlinear properties of the auditory system.11–15 For
example, modeling breathiness using auditory measures derived
from a loudness model16 resulted in better correlations with per-
ceptual data than traditional acoustic measures such as cepstral
peak prominence.12,17 In this model, the loudness elicited by the
aperiodic components in the voice was computed as “noise loud-
ness” (NL) and the loudness elicited by the harmonic energy of
the vowel that is masked by the aperiodic components of the
same voice was computed as “partial loudness” (PL). Breathiness
was directly related to NL and inversely related to PL. A com-
putational model of breathiness was developed14 in which
breathiness b̂( ) was predicted from a ratio of NL/PL or ratio of
noise loudness to partial loudness (η) and fundamental frequen-
cy (f0) expressed in equivalent rectangular bandwidth units, or
Φ, as shown in Equation 1.

ˆ . .. .b ideal= +−( )0 45 0 0261 7 054 0 78η φ (1)

The model accounted for 76.2% of the variance in the per-
ceptual data for natural stimuli. However, predictions were least
accurate for stimuli at both low and high ends of the breathiness
continuum.

More recently, Shrivastav and colleagues have shown that the
perception of breathiness and the perception of pitch strength
were strongly related to each other.15 Here, pitch strength refers
to how strong or how faint a listener perceives the sensation of
pitch in a sound stimulus. This quality is also referred to as “pitch
salience.” For example, a sustained vowel like /a/ evokes a strong
pitch sensation and thereby has higher pitch strength when
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compared with a fricative consonant like /s/. Pitch strength of
voices has been evaluated only recently,15 whereas pitch strength
has been extensively investigated for a variety of tonal and noise
stimuli.18–21 The authors examined the reliability of listener judg-
ments of pitch strength and the correlation between these
judgments and perceptions of breathiness and roughness. The
authors first established that listeners can indeed judge pitch
strength in dysphonic voices (inter-rater reliability of 0.87 and
intra-rater reliability of 0.80). Further, perceived pitch-strength
judgments and perceived breathiness were highly correlated
(r = −0.99; P < 0.001) for 11 breathy voice samples. Stimuli with
greater breathiness were perceived to have lower pitch strength,
supporting an inverse relationship. Collectively, these results in-
dicate that listeners were able to judge the pitch strength of
dysphonic voices in a reliable manner and that pitch strength
decreases systematically as breathy voice quality increases. Given
this strong relationship between perceived breathiness and per-
ceived pitch strength, it is plausible that a computational model
of pitch strength could predict listener perception of breathiness,
perhaps with less variability than the loudness-based model de-
scribed above and much less time-consuming than perceptual
judgments. Therefore, the goals of this study were to (1) confirm
the relationship between perceived breathiness and computa-
tional estimates of pitch strength in a larger set of breathy stimuli,
and (2) develop a model for perception of breathiness using acous-
tic estimates of pitch strength. If the relationship between
breathiness and pitch strength reported previously extends to a
broader range of stimuli and to different perceptual tasks, then
there will be a high correlation between perceived breathiness
and computational estimates of pitch strength. If successful, the
pitch-strength model of breathiness would offer advantages over
the PL model13,14 (although the two likely are correlated)22 in that
pitch-strength estimation may directly account for pitch depen-
dencies seen in the loudness-based model, and does not require
separation of the stimulus into periodic and aperiodic compo-
nents. Furthermore, the algorithm used to compute pitch strength
can be used for running speech, making it simpler to extend such
a model from vowels to conversational speech samples.

To best achieve the goals stated above, we leverage the results
obtained from previous experiments using three different psy-
chophysical methods in which listeners judged breathiness: rating
scale, magnitude estimation, and a single-variable matching task
(SVMT). The primary focus is on data from the SVMT because
it yields ratio-level data, minimizes the potential for contextual
bias, and eliminates the need for numerical scaling and any related
errors.23 Briefly, rating scales are often characterized by “equal
appearing intervals,” with the accompanying unverified assump-
tion that listeners are aware of the total range of breathiness
variations and that they can accurately divide this breathiness
range into subjectively equal perceptual distances. By defini-
tion, magnitude estimation tasks remove this assumption because
listeners judge ratios of sensation rather than abstract inter-
vals. However, both magnitude estimation and rating scales are
highly dependent on context, and can be affected by number,
range, and frequency of stimulus attribute(s). High chances of
inherent perceptual biases prevalent in both these methods can
be removed with matching tasks that provide listeners with a ref-

erence to compare and judge voice samples. As a result,
comparisons of ratings from matching tasks are more reliable
across stimuli and across experiments.

METHODS

Stimuli

Breathy voice stimuli were selected from prior perceptual
studies.14,17,23,24 Of these, 57 phonation samples of vowel /a/ that
represented a wide range of breathiness (from nearly normal to
severe breathiness) were selected from the Kay Elemetrics Dis-
ordered Voice Database (Kay Elemetrics, Inc., Lincoln Park, NJ),
henceforth referred as “natural stimuli.” These stimuli were re-
corded at a sampling rate of 50,000 Hz and were downsampled
to 24,414 Hz with 16-bit quantization to match the hardware re-
quirements for perceptual experiments. In addition, 10 phonation
samples of vowel /a/ (five male and five female; henceforth re-
ferred to as “talkers”) were generated using the Klatt Synthesizer
(Sensimetrics Corporation, Malden, MA), with the Liljencrants-
Fant (LF) model25,26 as glottal source. The synthesizer parameters
of these samples, including the f0 and the first three formant fre-
quencies (F1, F2, and F3), were set based on 10 natural voice
samples selected from a pilot listening experiment (four listen-
ers judged the breathiness level of 50 randomly selected voices
from the Kay Elemetrics Disordered Voice Database. Then, these
ratings were averaged and rank ordered into five levels of varying
breathiness [mild to severe] and one male/one female sample
from each breathiness level). Further, prior research has indi-
cated that changes in the aspiration noise level (AH) and the open
quotient (OQ) parameters of synthetic vowels impact breathiness
of the synthesized vowels.6,25 Therefore, source and filter pa-
rameters including AH, OQ, tilt, and formant bandwidths were
also manipulated (Table 1). Specifically, AH and OQ were sys-
tematically manipulated to generate separate stimulus continua
with 11 levels of increasing breathiness. A third continuum that
covaried in both AH and OQ (referred to as AO) was also created.
Each of the stimulus series (AH, OQ, and AO) consisted of 10
talkers and 11 “breathiness levels” corresponding to 11 AH (~0–
80 dB), OQ (~25–99%), or combined AH/OQ values. This
resulted in a total of 110 stimuli per series. Thus, a total of 330
“synthetic stimuli” (three series × 10 talkers × 11 levels) were
created. These synthetic stimuli were sampled at a rate of
12,207 Hz with 16-bit quantization. They were edited to have
500 ms duration and were equated to have the same root mean
square amplitude. Finally, they were shaped with a 20-ms cosine-
squared onset and offset window to avoid any audible clicks.

Listener judgments of breathiness

Approximately 10 individuals between 22 and 25 years of age
were tested for each of the perceptual experiments cited below.
Individual listeners participated in only one of the perceptual
studies cited below with one exception. One listener partici-
pated in the SVMT study with natural stimuli and in the pitch-
strength study. All participants were native speakers of American
English, were students enrolled in either the Communication Sci-
ences or Disorders or the Linguistics program, had taken at least
one course in Communication Sciences or Disorders, and had
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hearing thresholds less than 20 dB HL via air conduction at fre-
quencies of 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz.
All perceptual experiments were approved by the institutional
review board. Listeners consented to the procedures and re-
ceived compensation for their participation. All data acquisition
was controlled using Sykofizx software and TDT System 3 hard-
ware (Tucker-Davis Technologies, Inc., Alachua, FL). Stimuli
were presented to the listeners in a single-walled sound booth
using ER-2 insert earphones (Etymotic Research Inc, Elk Grove
Village, IL). These earphones were chosen for their flat fre-
quency response at the tympanic membrane. Stimuli were
presented at 85-dB sound pressure level in the right ear, to avoid
potential effects of binaural interaction. For each perceptual ex-
periment, listeners made judgments of breathiness using one of
the following psychophysical methods: (1) rating scale, (2) mag-
nitude estimation, or (3) SVMT.

Using a rating scale task, 27 natural and 330 synthetic stimuli
were evaluated. Each natural stimulus was presented to listen-
ers 10 times in a random order for breathiness rating on a five-
point scale (0: minimal breathiness, 4: maximum breathiness).
Similarly, each synthetic stimulus was presented to listeners five
times in a random order for breathiness rating on a seven-point
scale (1: minimal breathiness, 7: maximum breathiness). The
breathiness ratings for each stimulus were averaged across all
trials and listeners to estimate group means for each voice stim-
ulus. For the magnitude estimation task, 30 natural and 330
synthetic stimuli were tested. Here, listeners assigned each voice
stimulus a number that reflected the magnitude of breathiness
(1–1000, continuous scale including fractions, excluding zero)
without anchors. Listeners were instructed that a stimulus per-
ceived to be twice as breathy as another should be assigned double

the score as the first one. Stimuli from each synthetic series (ie,
AH, OQ, and AO) were presented five times in blocks of 10;
stimuli were randomized within each block and across each lis-
tener. The breathiness ratings for each stimulus were averaged
across all trials and listeners to estimate group means for each
voice stimulus. The rating scale task took approximately 1–2 hours
and the direct magnitude estimation took approximately 3–4 hours
for each listener.

For the SVMT, listeners evaluated the degree of breathiness
in dysphonic voices by comparing them with a synthetic com-
parison signal. The comparison stimulus was created by mixing
a low-pass filtered sawtooth waveform (151 Hz; −7 dB/octave)
with a speech-shaped noise with identical filter. The variable pa-
rameter was the relative level of the sawtooth waveform to the
noise of the comparison signal (SNR). On a given listening trial,
the reference sound (one of 330 voice samples) was presented
followed by the comparison sound. The SNR of the compari-
son stimulus (in decibels; dB) was increased or decreased by
the listener until the perceived breathiness of the two stimuli was
judged to be equal. The SNR for each subject and condition was
taken as the average of five ascending (low initial SNR) and five
descending (high initial SNR) blocks of trials. (Refer to Patel
et al23 for a detailed description of each of these methods.) For
the SVMT, only five of the 11 levels of synthetic stimuli were
tested from each talker (10 talkers × five levels; N = 50) because
this task was much more time-consuming than the rating scale
and the magnitude estimation tasks, and because data obtained
using rating or magnitude estimation indicated very little dif-
ference in magnitude of perceived breathiness between adjacent
points along the stimulus continuum for some of the stimuli in-
cluded here.

TABLE 1.

Klatt Synthesizer Parameters Used to Synthesize 10 Talkers (Adapted from Shrivastav et al14,15)

Parameter

Male Talkers Female Talkers

1 2 3 4 5 1 2 3 4 5

F0 (Hz) 133.1 113.7 115.5 117 134.4 220.4 209.0 209.1 195.5 200.7
AV (dB) 60 60 60 60 60 60 60 60 60 60
OQ (%) range 25–99 25–99 25–99 35–99 30–85 30–99 35–99 35–99 25–99 30–99

Step size 7.4 7.4 7.4 6.4 5.5 6.9 6.4 6.4 7.4 6.4
SQ (%) 200 200 200 200 200 200 150 350 200 200
TL (dB) 0 10 20 30 40 0 10 20 30 40
FL (%) 10 10 10 10 10 10 10 10 10 10
AH (dB) range 0–75 0–80 0–75 0–80 55–80 0–80 0–80 0–75 0–80 55–80

Step size 7.5 8 7.5 8 2.5 8 8 7.5 8 2.5
FNP (Hz) 180 180 180 180 180 180 180 180 280 180
BNP (Hz) 1000 1000 1000 1000 1000 1000 1000 40 90 30
F1 (Hz) 661 559 814 586 814 891 759 1050 977 957
B1 (Hz) 200 400 600 800 1000 200 400 600 800 1000
F2 (Hz) 1122 1214 1473 1187 1473 1587 1333 1410 1356 1619
B2 (Hz) 200 200 200 200 200 200 200 200 150 200
F3 (Hz) 2281 2340 2250 2463 2250 3083 2930 3000 2905 2877
B3 (Hz) 300 300 300 200 250 300 300 300 200 250

Abbreviations: AH, amplitude of aspiration; AV, amplitude of voicing; BNP, bandwidth of nasal pole; B1, bandwidth of F1; B2, bandwidth of F2; B3, band-
width of F3; FL, flutter; FNP, frequency of nasal pole; F0, fundamental frequency; F1, first formant frequency; F2, second formant frequency; F3, third formant
frequency; OQ, open quotient; SQ, speed quotient; TL, spectral tilt.
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Pitch-strength estimates

Computational estimates of pitch strength Ψ̂( ) were obtained
for all stimuli (57 natural and 330 synthetic stimuli) from a saw-
tooth waveform-inspired pitch estimator with auditory front-
end (Aud-SWIPE).27,28 Briefly, the algorithm computes a stimulus
spectrum using an auditory front end and correlates the spec-
trum with a family of sawtooth kernel functions constructed over
a range of f0 (pitch candidates). The pitch candidate producing
the largest correlation is the output pitch of the algorithm, and
the correlation value is referred to as the pitch strength. The au-
ditory front end consists of transfer functions that model the outer
and the middle ear (effectively flattening the spectral enve-
lope), a time-aligned gammatone filter bank (simulating cochlear
filtering), and half-wave rectifiers (simulating the mechanical to
electrical transduction process). The rectified output of each
channel is converted to the spectral domain using a Fast-
Fourier Transform (FFT) and a Hanning window of approximately
eight fundamental periods in length (based on pitch candidate
period). The upper harmonics above the center frequency of each
channel are suppressed, and the final auditory spectrum is com-
puted by summing the square root magnitude spectra across
channels. The sawtooth kernel functions, representing the spectra
of sawtooth waveforms, are constructed for each pitch candi-
date by centering sinusoidal lobes at the f0 and all prime-
numbered harmonics, with each lobe spanning the range of –π
to +π radians and a width equal to the pitch candidate. The si-
nusoidal lobes are used because they closely approximate the
spectral leakage of harmonic pulses due to a Hanning window
that is eight fundamental periods in length. The negative parts
of each lobe perform inhibition on inter-harmonic regions, whereas
the use of prime-numbered harmonics reduces the correlation
of subharmonic pitch candidates. The amplitude of the lobes is
scaled by the square root of inverse frequency, which follows
the roll-off of a sawtooth spectrum and reduces the correlation
of super-harmonic pitch candidates. Pitch and pitch strength were
estimated using overlapping analysis frames and a frame rate
of 100 frames per second.

The pitch candidate with the highest degree of similarity (a
number between 0 and 1) between the sawtooth waveform and
the spectrum of the input signal was taken as the estimated pitch
height, and the actual correlation value was taken as an esti-
mate of the pitch strength.

RESULTS

Relationship between breathiness judgments and

computational estimates of pitch strength

The current study had two goals. The first goal was to confirm
the relationship between perceived breathiness and pitch strength,
as reported by Shrivastav et al.15 To do so, perceptual judg-
ments of breathiness were obtained using three psychophysical
tasks and four sets of voices. A second goal was to develop a
model for the perception of breathiness using computational es-
timates of pitch strength produced by Aud-SWIPE (P-NP)
estimator. A summary of the relationship between the percep-
tual results and the pitch-strength estimates, organized by
perceptual task and stimulus set, is shown in Table 2. Correla-
tions (Pearson r) between perceived breathiness and pitch-

strength estimates from Aud-SWIPE (P-NP) were consistently
high, ranging from 0.82 to 0.97, in absolute value. Negative cor-
relations on rating scale and magnitude estimation tasks indicate
that stimuli perceived to have lower breathiness (ie, lower numbers
on rating scale and magnitude estimation) were observed to have
higher pitch strength, as estimated by Aud-SWIPE (P-NP). On
the contrary, on the SVMT, lower decibel SNR values indicate
a voice with high breathiness and positive correlation. The inverse
relationship between pitch strength and perceived breathiness
mirrors that reported by Shrivastav et al15 in that voices per-
ceived to be higher in breathiness have lower pitch strength. Based
on these results, it is evident that pitch strength is strongly cor-
related with breathiness judgments.

Example of model predictions

The strong relationship between perceived breathiness and pitch
strength estimated by Aud-SWIPE (P-NP) offers the possibili-
ty to predict perceived breathiness for a novel data set. It is most
straightforward to predict perceptual data from the matching ex-
periment (SVMT) because those are ratio-level data, have
meaningful units, and are perhaps the most straightforward to
interpret in terms of perceived breathiness. To evaluate this pos-
sibility for the available data, part of the natural dataset was chosen
as the basis to estimate breathiness. This particular dataset in-
cluded 15 natural voices varying along a continuum of low to
high breathiness. The perceptual judgments of breathiness (av-
eraged across 10 listeners) were plotted against the pitch-
strength estimates from Aud-SWIPE (P-NP), as shown in
Figure 1. It is evident that stimuli with lower pitch-strength es-
timates were perceived to have higher breathiness and vice versa.
This relationship was well described via linear regression to the
data (R2 = 0.87) as follows:

ˆ . ˆ .b= × +24 78 6 921Ψ (2)

TABLE 2.

Correlation Between Pitch-strength Estimates and

Breathiness Judgments for Natural and Synthetic Stimuli

Obtained Through Three Psychophysical Methods

Perceptual Task Stimuli Pearson r R2

Rating scale Natural −0.88 0.78
Synthetic—AH −0.94 0.89
Synthetic—OQ −0.82 0.67
Synthetic—AO −0.90 0.81

Magnitude
estimation

Natural −0.92 0.85
Synthetic—AH −0.97 0.94
Synthetic—OQ −0.94 0.88
Synthetic—AO −0.95 0.90

Matching Natural 0.93 0.87
Synthetic—AH

(Naïve listeners)
0.94 0.89

Synthetic—AH
(Expert listeners)

0.90 0.82

Synthetic—AO 0.91 0.83

Twenty-seven natural stimuli were judged on a rating scale. Thirty natural
stimuli were judged on magnitude estimation and matching tasks.
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where b̂ is perceived breathiness and Ψ̂ is the pitch-strength
estimate from Aud-SWIPE (P-NP). Based on this relationship,
pitch-strength estimates from Aud-SWIPE (P-NP) can be used
to predict perceived breathiness from the matching task in decibel
SNR.

Predictions of the model using this regression equation were
evaluated on (1) the remainder of the natural stimuli (N = 15),
(2) synthetic AH series (N = 45)a, and (3) synthetic AO series
(N = 45)b for which perceptual breathiness matching data were
obtained from 10 novel listeners for each data set. One means
of assessing the quality of the predictions is to regress the pre-
dicted data onto the perceived data. Figure 2 compares perceived
breathiness from SVMT with predicted breathiness from Equa-
tion 2. As shown in the figure, perceived and predicted breathiness
were strongly correlated (r = 0.94, P < 0.001) for natural stimuli.
This produced the following relationship:

ˆ . ˆ .b bactual predicted= × +0 84 2 697 (3)

which indicates that the breathiness model accounts for 88% of
variance in the perceptual data of the natural stimuli (Figure 2).

To assess how well Equation 2 applies to synthetic data, we
used it to predict breathiness ratings from the synthetic AH and
AO series. As shown in Figure 3A and B, perceived and pre-
dicted breathiness were also strongly correlated to the AH
(r = 0.94, P < 0.001) and the AO (r = 0.91, P < 0.001) synthet-
ic stimuli. The average mean-squared error was 7.5 dB. Figure 4A
and B depicts breathiness judgments versus pitch-strength es-
timates for the natural (black squares) and synthetic stimulus sets
(AH unfilled circles in Figure 4A and AO unfilled triangles in

Figure 4B). For the same perceived breathiness (ordinate), pitch-
strength estimates (abscissa) were higher for synthetic stimuli
than for natural stimuli. Furthermore, estimates of pitch strength
for synthetic stimuli with the lowest perceived breathiness reached
an asymptote at pitch-strength value of ~0.72.

DISCUSSION

Inspired by the strong relationship between perceptual judg-
ments of vocal breathiness and perceptual judgments of pitch
strength,15 the current study was designed to evaluate the cor-
respondence between perceived breathiness and a computational
pitch estimator that yields an index of pitch strength (Aud-
SWIPE [P-NP]).28 As shown in Table 2, there was a strong
relationship between estimated pitch strength and perceived
breathiness that accurately characterized breathiness as mea-
sured with three different psychophysical tasks and multiple sets
of voices, ranging from normal to extremely dysphonic. This re-
lationship was observed over different stimulus types and sets
(natural or synthetic voices, breathiness synthesized by manipu-
lating AH, OQ, and AO). Hence, we derived a computational
model for perception of breathiness analogous to the model pro-
posed by Shrivastav et al14 that was based on the PL model of
Moore et al.16 However, the nature of the perceptual data and
the models used to predict breathiness differ in both studies. In
terms of the perceptual data, Shrivastav et al14 used a free direct
magnitude estimation task rather than the SVMT used here. The
matching task was preferred here over direct magnitude esti-
mation because it yields ratio-level data, minimizes the potential
for contextual bias, and eliminates the need for numerical scaling
and any related errors.23,24

Shrivastav et al modeled breathiness as a power function of
the η. Unfortunately, it was found that power varied with the f0

of the stimulus, such that vowels with lower f0 had a greater in-
crease in breathiness for an equal change in η.14 Therefore, the
loudness ratio model had to explicitly account for changes in
f0. On the contrary, the breathiness model described in this study
has only one predictive parameter: pitch strength (ie, the value
of f0 is not needed). Furthermore, the loudness ratio model

aNote that the results for one talker (t06) were discarded from this analysis as it was
determined, after data collection, that the voice was diplophonic and that the synthetic version
was highly unnatural sounding, resulting in a large deviation from the perceptual evalua-
tions of the rest of the voices.

bSee footnote a.

FIGURE 1. Pitch strength estimated with Aud-SWIPE (P-NP) Ψ̂( )
plotted against perceived breathiness obtained using SVMT for 15 natural
stimuli along a continuum of vocal breathiness. Matching thresholds
are reported in units of signal-to-noise ratio in decibel (see text for details)
where values near 0 dB correspond to high perceived breathiness and
values near 25 dB correspond to low perceived breathiness.

FIGURE 2. Breathiness predicted by the pitch strength model versus
perceptual judgments of breathiness for the subset of natural stimuli.
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required synthetic stimuli to compute the PL associated with the
periodic and the aperiodic parts of the stimulus (those are not
easily separable in natural stimuli), whereas pitch-strength es-
timates can be obtained on the composite synthetic or natural
stimulus.

By definition, pitch strength is independent of pitch itself.21

To evaluate this premise in voices, we computed f0 using the TF32
software (Madison, WI),29 pitch using the Aud-SWIPE (P-NP)
algorithm, and then computed correlations with estimated pitch
strength from Aud-SWIPE (P-NP) and perceived breathiness from
the matching task. For the natural stimuli, computed f0 values
were not significantly correlated with estimated pitch strength
(r = 0.037, P = 0.847) or perceived breathiness (r = 0.098,
P = 0.608). Additionally, computed pitch values were not sig-
nificantly correlated with estimated pitch strength (r = 0.239,
P = 0.204) or perceived breathiness (r = 0.327, P = 0.078). For
the synthetic stimuli, different levels of breathiness were gen-
erated by varying AH and OQ while maintaining f0. Thus, the
presence of multiple perceived breathiness thresholds or pitch-
strength estimates for a single f0 (talker) violates the
homoscedasticity assumption for linear regression. For these
reasons, measures of f0 were not included in the model.

The breathy model (based on natural stimuli) generalized very
well to novel natural stimuli and poorly to synthetic stimuli. In
Figure 3, the predicted breathiness of synthetic stimuli was lower
than the perceived breathiness (by up to 7 dB) for most of the

stimulus range (<22 dB), essentially underestimating the per-
ceived breathiness of synthetic stimuli. For the stimuli judged
to be the least breathy (>27 dB), the model overestimated the
perceived breathiness of synthetic stimuli. The empirical basis
for the model mismatch is evident in Figure 4, with different
relationships between breathiness and estimates of pitch strength
for natural and synthetic stimuli. For a given perceived breathiness
(eg, 15 dB), the pitch strength of natural stimuli was about 0.20
lower than that of synthetic stimuli. The added jitter and shimmer
present in the natural stimuli as well as differences in stimulus
bandwidth, the LF model used in synthesis, and potential limi-
tations in the Aud-SWIPE (P-NP) algorithm may contribute to
the lower pitch-strength values for natural stimuli given a spe-
cific perceived breathiness value. For both AH and AO synthetic
stimuli in Figure 4, estimates of pitch strength appeared to sat-
urate near 0.7 for the least breathy stimuli although the range
of perceived breathiness was below that for natural stimuli and
may thus be of little practical concern.

CONCLUSIONS

In this study, a computational model was developed for predict-
ing the perceived breathiness of acoustic stimuli using estimates
of pitch strength based on the Aud-SWIPE (P-NP) model.
Results indicate high correlations between perceived breathiness
judgments from human observers and model predictions
(R2 = 0.67–0.94). This model is simpler and more accurate

FIGURE 3. A. Breathiness predicted by the pitch strength model versus perceptual judgments of breathiness for synthetic AH stimuli. B. Breathiness
predicted by the pitch strength model versus perceptual judgments of breathiness for synthetic AO stimuli.

FIGURE 4. A. Pitch strength estimated from Aud-SWIPE (P-NP) Ψ̂( ) plotted against perceived breathiness obtained using SVMT for natural
and synthetic AH stimuli. B. Pitch strength estimated from Aud-SWIPE (P-NP) Ψ̂( ) plotted against perceived breathiness obtained using SVMT
for natural and synthetic AO stimuli.
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than a loudness-based model described previously.13,14 The
current data indicate that the high precision predictions for
natural stimuli can be extended to synthetic stimuli with a
simple correction factor. Ultimately, the model utility will be
determined by the potential to accurately predict perceived
breathiness on novel data sets as those data are collected in the
context of other investigations.
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