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Summary: Objective. Classifying dysphonic voices as type 1, 2, and 3 signals based on their periodicity ena-
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bles researchers to determine the validity of acoustic measures derived from them. Existing methods of signal typ-
ing are commonly performed by listening to the voice sample and visualizing them on narrow-band spectrograms
that require training, time, and are subjective in nature. The current study investigated pitch-based metrics (pitch
height and pitch strength) as correlates to characterizing voice signal types. The computational estimates were
validated with perceptual judgments of pitch height and pitch strength.
Methods. Pitch height and pitch strength were estimated from Auditory-Sawtooth Waveform Inspired Pitch
Estimator Prime algorithm for 30 dysphonic voice segments (10 per type). Ten listeners evaluated pitch height
through a single-variable matching task and pitch strength through an anchored magnitude estimation task.
One way analyses of variance were used to determine the effects of signal type on pitch height and pitch strength
estimates. Relationship between computational and perceptual estimates was evaluated using correlation coeffi-
cients and their significance.
Results. There was a significant difference between signal types in both computational and perceptual pitch
strength estimates. Periodic type 1 signals had greater pitch strength compared to type 2 and 3 signals. Auditory-
Sawtooth Waveform Inspired Pitch Estimator Prime produced robust computational estimates of pitch height
even in type 3 signals when compared to other acoustic software. Listeners were able to reliably judge pitch height
in type 2 and 3 signals despite their lack of a clear fundamental frequency.
Conclusions. Pitch height and pitch strength can be measured in all dysphonic voices irrespective of signal
periodicity.
Key Words: Dysphonia−Perception−Acoustics−Signal typing−Pitch height−Pitch strength.
INTRODUCTION
Acoustic analysis of voice is an indispensable part of voice
research and clinical assessment of dysphonia. However,
the accuracy and validity of most conventional analysis
routines is limited by the degree to which the voice being
examined has a quasiperiodic waveform. While not univer-
sally used, “signal typing” can be a valuable guide for
choosing an appropriate set of tools or measures for charac-
terizing the vocal acoustic signal.

Signal typing refers to an evaluative process that allows
researchers and clinicians to describe the periodicity of a
voice signal, to systematically categorize those signals, and
to use the signal type to guide the selection of appropriate
acoustic analyses for evaluating dysphonic voices. Signal
typing uses both auditory (playback and listen) and visual
(waveform and narrowband spectrogram) representations
to divide the voice into one of three or four categories. The
summary statement of the National Center for Voice and
Speech Workshop on Acoustic Voice Analysis (1995),
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described a scheme for classifying voices into three types
(Figure 1).1 Type 1 signals were defined as nearly-periodic
signals with a consistent or nearly consistent fundamental
frequency (f0) throughout a sustained vowel segment. Type
2 signals were defined as those voices containing bifurca-
tions and having subharmonic or modulating frequencies
whose magnitude approach the magnitude at the f0. Type 3
signals were defined as those voices that contain no readily
apparent periodic structure. Sprecher et al2 refined Titze’s
definition of voice signal types to include a fourth type,
which divided type 3 signals into those with finite
dimensionality and occasional presence of f0 (type 3) and
those with infinite dimensionality that were stochastic in
nature (type 4). These signal typing methods illustrate the
complex spectrotemporal features of voices that range along
a continuum from normal to disordered and from quasiperi-
odic to predominantly aperiodic.

Although the importance of signal typing is well-recog-
nized in the scientific community, the methods are complex
and include subjective evaluation; therefore, only a limited
number of research studies have formally classified voice
signals prior to acoustic analyses.3−9,2,10,11 Among those
studies, most have not described the typing procedures in
detail (eg, lack of description on rater experience) and have
not obtained signal-type classifications from multiple
judges. Since the signal typing procedure requires visual
judgment and segmentation of dysphonic voices, it is impor-
tant to evaluate its accuracy through the use of multiple
judges. The two studies that did report inter-rater reliability
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FIGURE 1. Sample waveforms (upper panel) and spectrograms (lower panel) of type 1, 2, and 3 voice signals.
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and agreement data indicated only poor to fair correlations
among judges.3,9 For example, Behrman et al3 reported that
judges had difficulty discriminating between 40% of signals
considered types 2 and 3. On the other hand, a study by Ma
and Yiu9 reported 77% interjudge exact agreement in catego-
rizing voices into one of the Titze’s three voice signal types. It
is likely that the subjective nature of the signal typing task
results in low reliability/agreement scores and presents chal-
lenges during clinical evaluation. Alternatively, quantitative
methods through the use of nonlinear dynamic analyses can be
used to classify signal types.12,13 Zhang and Jiang13 examined
correlation dimension analysis as a potential nonlinear
dynamic measure and reported that such a measure was able
to effectively describe and classify dysphonic voices into type
1, 2, and 3 signals. The correlation dimension (D2) increased
from type 1 to 3 signals and D2 was statistically different
between any two types of signals (P< 0.001). Calawerts et al12

introduced rate of divergence as a potential objective measure
that differentiates the four signal types based on Sprecher’s
classification system. The rate of divergence parameter uses a
modified version of Wolf’s algorithm for calculating Lyapunov
exponents and was extracted from types 1, 2, 3, and type 4 sus-
tained /a/ samples. Similar to D2, the rate of divergence mea-
sure was able to differentiate type 1, 2, 3, and 4 signals with a
high level of accuracy. More importantly, unlike D2, this
measure was effective in differentiating type 3 and 4 signals
(P< 0.001) as it was effective in characterizing type 4 signals
which are heavily masked by stochastic signal components.
While such computational methods appear to be promising
and may provide a suitable replacement for signal typing, their
broader adoption by professionals has been constrained by the
lack of understanding or intuition regarding their derivation or
interpretation along with a lack of easy access to these analyti-
cal methods. Consequently, evaluation of the dysphonic voice
in the clinic is completed via more conventional acoustic analy-
ses that represent the vocal acoustic signal in temporal, spec-
tral, and/or cepstral domains.
Estimates of fundamental frequency (f0; defined as the low-
est frequency in a harmonic complex) have a long-standing
heritage in research and clinical practice as a useful means of
indexing vocal fold vibration rate and as a covariate in other
complex acoustic analyses. Measures of perturbation (eg, jit-
ter and shimmer) and noise (eg, harmonic-to-noise ratio) in
the vocal signal are commonly used to identify dysphonia, to
characterize its nature, or to quantify its severity.14,1 Prior
research, however, has demonstrated significant variability in
each of these time-based measures15−20 and, in some cases,
contradictory results. For example, Carding et al4 reported
higher perturbation values while Wolfe et al19 reported lower
perturbation values associated with dysphonic voices com-
pared to normal voices. Furthermore, the accuracy of such
acoustic measures is dependent on having a nearly perfectly
periodic voice signal with a consistently measurable f0. In real-
ity, however, up to 80% of people with dysphonia have voices
that have considerable aperiodicity.3,9 Due to their depen-
dence on a stable f0 and resulting periodicity, the validity and
reliability of many time-based acoustic analyses of voice are
questionable when applied to many dysphonic voices. On the
contrary, that very instability, the degree of variability, or the
magnitude of change may represent key acoustic features
needed to fully characterize a dysphonic voice. Measures
based on spectral and cepstral analyses of the voice signal do
not require identification of individual cycles as in time-based
analyses. Broadly speaking, one class of spectral analyses
includes measures that consider local (eg, the amplitude of
first harmonic, H1, relative to that of the first formant, A1, or
the second harmonic, H2) or global (spectral slope, tilt, low-
to-high-frequency (L/H) ratio, high-frequency power ratio)
comparisons of spectral magnitude across audio-frequency.21
−24 Another approach is to first use a second Fourier transfor-
mation to convert the spectrum to the cepstral domain and
then capture variations in the signal characteristics across
audio-quefrency (eg, cepstral peak prominence, CPP25−29).
Significant correlations between spectral/cepstral measures



1Note that several of the rough voice samples in this study could be characterized as
breathy too, while the breathy examples rarely were also considered rough. Thus, it is
not clear whether the pitch strength associated with roughness was related to rough-
ness per se, to a breathy component in primarily rough stimuli, or to an overall
severity.
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and overall dysphonia severity have been reported in the liter-
ature.30,31 Since these spectral- and cepstral-based measures
can overcome the periodicity limitation discussed earlier to a
certain extent, their use has gained popularity in the last
decade. Some experts have used such measures to develop
indices that broadly track changes in voice quality (eg, Acous-
tic Voice Quality Index, AVQI;32,33 and Cepstral Spectral
Index of Dysphonia, CSID34,35,29).

Yet another approach has been to use a bio-inspired
computational front-end that can model the nonlinearity of
the acoustic signal transduction process in the auditory
pathways, prior to any characterization of the vocal acous-
tic signal. The use of such models has allowed the develop-
ment of metrics that are highly correlated with perceptual
judgments of voice quality.36−39 This general approach can
also apply to the study of f0 or periodicity, which forms the
basis for signal typing. Note that f0 is a physical property of
the signal and is difficult to quantify for signals with bifurca-
tions (type 2) or with aperiodic sound sources (type 3/4). In
contrast, pitch characteristics are psychological attributes of
a sound, and may be described for all sounds, irrespective of
the underlying periodicity (or lack thereof). This relative
independence between pitch and periodicity allows the use
of pitch to describe a wider set of voice signals than may be
possible through the use of f0. From a perceptual perspec-
tive, pitch itself is a three-dimensional construct consisting
of “height,” “chroma,” and “strength”.40−42 Pitch height is
that attribute of sound ordered on a scale from low to
high.43,42 In contrast, pitch chroma refers to notes of the
musical scale perceived as repeating once per octave.41

Finally, pitch strength refers to the degree of tonality in a
sound or the salience of the pitch sensation on a scale from
weak to strong.42 The concepts of pitch height and pitch
strength, along with pitch chroma, have been used for deca-
des to describe a variety of sounds (eg, pure tones, complex
tones, amplitude-modulated tones, narrow-band noise,
broad-band noise, band-pass noise, and comb filtered
noise44,45,42). Fastl and Stoll44 described three separate
acoustic bases of the pitch sensation and referred to those as
spectral, virtual, and noise pitch. Spectral pitch, described
as the pitch sensation the auditory system derives from a
pure tone has historically been considered to have the stron-
gest sensation of pitch strength, ranging between 75% and
100%. On the other hand, virtual pitch, described as the
pitch sensation (height and strength) that the auditory sys-
tem derives from a complex signal evokes an intermediate
sensation of pitch strength, averaging a pitch strength of
50%. Finally, noise pitch was described as the pitch sensa-
tion that the auditory system derives from noise. For nar-
rowband noises, the pitch strength may approach the levels
achieved for spectral pitch. However, on average, noises are
considered to have the weakest pitch strength, ranging
between 0% and 25%.

These concepts of pitch height and pitch strength can be
extended from the psychoacoustic literature with synthetic
non-speech sounds to normal and dysphonic voices. Pitch
height is a parameter that is often assessed in clinical
evaluation of dysphonia (ie, CAPE-V46). Pitch chroma
forms the basis of various notes in most musical styles. The
use of pitch strength to describe dysphonic voices is rela-
tively recent47 and listeners’ ability to reliably provide per-
ceptual judgments of pitch strength (and pitch height) has
been documented.47 Perceived pitch strength varies widely
across normal and dysphonic voices, and is strongly corre-
lated with judgments of perceived breathiness (Pearson’s
r=�0.99, P< 0.001) and roughness (Pearson’s r=�0.90,
P< 0.005).1 While pitch height and pitch strength are per-
ceptual constructs, these can be estimated through the use
of appropriate algorithms specifically developed for this
purpose48 (Auditory-Sawtooth Waveform Inspired Pitch
Estimator Prime [Aud-SWIPE'49]). Note that these
approaches differentiate f0 (a physical property of the sig-
nal) from its pitch (its psychoacoustic attribute), even
though the two may be highly correlated. In this study, we
sought to determine whether such estimates of pitch and
pitch strength may be useful in describing dysphonic voices
even when these do not have a clearly visible harmonic
structure or a sufficiently periodic waveform (ie, type 2 and
3 signals). We also explored whether these might help differ-
entiate dysphonic voices into three distinct signal types as
described by Titze.1 By equating the signal typing descrip-
tions of type 1, 2, and 3 signals to the spectral, virtual, and
noise pitches described by Fastl and Stoll,44 it is hypothe-
sized that type 1 signals will be associated with the strongest
pitch sensation or pitch strength and type 3 voice signals
will be associated with the lowest pitch sensation or pitch
strength. Given that many dysphonic voices are aperiodic in
nature, establishing the signal type will support the selection
of valid acoustic measures. Likewise, knowledge of signal
type can guide the exploration of new analytic methods and
help to establish which methods generalize to multiple voice
types.
GENERAL METHODS

Stimuli
A total of 36 voices (sustained vowel phonations /a/) from
the University of Florida Dysphonic Voice Database were
selected for this study based on stratified random sampling
procedures. These voices had previously been rated by three
expert voice scientists for breathiness, roughness, and strain
on a five-point scale (1 being “normal” and 5 being
“severe”). For the current study, voices with ratings of
either “1” on all voice quality dimensions, or voices with
ratings of “2” or higher on at least two voice quality dimen-
sions were included to ensure that the stimuli represented a
continuum of signal types. Voices were excluded if the
speaker diagnosis was spasmodic dysphonia or vocal tremor
to avoid signals with multiple vowel onsets and offsets.



FIGURE 2. Sample graphical output from the MATLAB GUI
representing the manual marking capability to identify multiple
signal types within the same voice signal.
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Signal typing
Three judges (one undergraduate, one masters, one doctoral
student) from Michigan State University (all female; ages
20−29) were trained by an expert in signal typing (E.J.H.)*
who had greater than 20 years of experience in signal typing.
All judges had: (a) at least 6 months of experience with per-
ceptual and acoustic analysis of normal and disordered voice
quality and (b) hearing within normal limits as assessed using
pure tone audiometry at frequencies ranging from 250 to
8000 Hz.50 The standard method of signal typing1 (based on
visualization and listening to the signals was expanded to
allow parsing of a single signal recording into more than one
segment. Thus, rather than constraining the judges to one sig-
nal type judgment for the entire recording, they could parse
the signal into multiple segments and assign different signal
types to different segments. To do so, they were able to visu-
alize the overall waveform and narrowband spectrogram in a
two-panel display rendered by the TF32 software.51 At the
same time, they also visualized the same high quality wave-
form representation and a lesser-quality narrowband spectro-
gram in a customized MATLAB graphical user interface.
Both applications supported listening to the entire signal
waveform. The graphical user interface, however, allowed
each judge to mark the initial and final time points of seg-
ments judged to have different signal types and then to iden-
tify the signal type of each of the segments (Figure 2). The
separate segments were then saved as individual sound files
for subsequent acoustic analyses.

Following the initial signal typing process by all three
judges, a consensus session was held to resolve any inconsis-
tencies in judgments. If at least two judges assigned the
same signal type for a given segment of a voice signal, that
signal type was retained. If each judge assigned a different
signal type to a given segment, then they discussed the fea-
tures that led to their signal typing. If they came to an agree-
ment, the agreed upon signal type was assigned. If an
TABLE 1.
Number and Length of Segments for Each Signal Type

Signal Type Number of Segments

Type 1 26

Type 2 16

Type 3 19
agreement could not be reached, that segment was excluded
from further analysis. This process led to a total of 61 seg-
ments from the original 36 voices that were agreed upon by
the three judges. As shown in Table 1, the number of seg-
ments, as well as segment length, varied by signal type. To
avoid potential effects of variations in the number of seg-
ments on further analysis, the 10 longest segments from
each signal type were selected for the study. To avoid the
potential influence of variable signal duration, the center
400 ms of each stimulus was extracted from each of the 10
segments using a custom MATLAB script.
EXPERIMENT 1: SIGNAL TYPE AND PITCH
STRENGTH

Experiment 1 sought to determine whether computational or
perceptual estimates of pitch strength associated with individ-
ual voice segments could be used to reliably characterize type
1, 2, and 3 signals in accordance with subjective judgments.
Because estimates of pitch strength are proportional to peri-
odicity,42 the predicted outcome was an inverse relationship
between signal type and estimated pitch strength.
Methods
The methods below are presented in an order that is consis-
tent with subsequent presentation of the experimental results.
Computational estimates of pitch strength
The Aud-SWIPEʹ49 was used to estimate the pitch height
and the pitch strength of each of the 30 stimuli (10 per signal
type) chosen from the larger set of 61 segments. This algo-
rithm is outlined in Figure 3. The auditory front-end is com-
prised of cascaded filters (modeling outer and middle ear
transfer functions), a time-aligned gammatone filterbank
(simulating cochlear filtering), half-wave rectification (simu-
lating the mechanical to electrical transduction process in
the cochlea), and channel-dependent weighted low-pass fil-
ters. Following principles detailed by Moore, Glasberg, and
Baer,52 the spectrum is converted to specific loudness on an
equivalent rectangular bandwidth scale to transform the
representation from a physical to a perceptual one. Subse-
quent to this auditory processing front-end, the algorithm
compares, via cross-correlation, the loudness-based spec-
trum of a dysphonic voice sample to the loudness-based
spectrum of a family of sawtooth kernel functions con-
structed over a range of f0 values (pitch candidates). Only
the prime harmonics are included in the analysis to
Minimum Length Maximum Length

0.07 s 5.47 s

0.10 s 5.10 s

0.04 s 5.04 s



FIGURE 3. A schematic diagram of the Auditory-Sawtooth Inspired Pitch Estimator Prime (Aud-SWIPEʹ) algorithm. As described in the
text, the auditory frontend consists of multiple cascaded filters, half-wave rectification, and conversion to a frequency-dependent loudness
representation. Also refer to Camacho.49
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minimize halving and doubling errors associated with esti-
mating f0. The f0 of the candidate waveform with the highest
degree of similarity (correlation between 0 and 1) between
the processed sawtooth waveform and identically processed
spectrum of the input signal is taken as the estimated pitch
height, and the value of that correlation is taken as the esti-
mate of the pitch strength. Thus, pitch height is in units of
Hz and pitch strength is a number between 0 (minimum
pitch strength) and 1 (maximum pitch strength).
Perceptual estimates of pitch strength
Listeners: Perceptual estimates of pitch strength for the
same 30 stimuli were obtained from 10 young adult listeners
(9 female and 1 male; mean age of 25 years). All listeners
were native speakers of American English and passed a
hearing threshold screening (≤20 dB HL between audiomet-
ric frequencies of 250 and 4000 Hz). All procedures were
approved by the Institutional Review Board at the Univer-
sity of South Florida and all listeners voluntarily consented
to and were compensated for their participation. Prior to
this experiment, listeners had no prior experience judging
the pitch strength of general sounds or dysphonic voices.

Instrumentation: This experiment was controlled using
TDT System III hardware and TDT Sykofizx software.
Stimuli were delivered at 85 dB SPL in the right ear via ear
inserts (ER-2, Etymotic Research) and perceptual testing
was performed in a double-walled sound attenuating booth.

Procedure: Perceptual estimates of pitch strength were
obtained using an anchored magnitude estimation task.53,47,54

On a given trial, listeners heard three stimuli separated by
500 ms silent intervals. The first anchor stimulus was a wide-
band noise with a low pitch strength value (0). The second
stimulus was the test stimulus whose pitch strength value was
assigned by the listener. The third stimulus was a pure tone
(1000 Hz) with a high pitch strength value (1) and served as a
second anchor. Listeners judged the pitch strength of the test
stimulus on each trial by positioning a continuous slider
between the values of 0 and 1 with 101 intervals.

Given that listeners had no prior experience in judging pitch
strength, a familiarization task was developed mirroring the
main experiment. In this task, listeners judged pitch strength
of five iterated rippled noise (IRN) stimuli. IRN stimuli are
generated by attenuating and adding a delayed version of a
broad-band noise to itself.44,53−56 Among, the multiple
parameters that can be used to manipulate the pitch strength
of IRN stimuli, the current study varied the attenuation of
each iteration of the noise following Shrivastav et al47 Judg-
ments of pitch strength were obtained in three separate 50
trial-blocks. For each block, each of the five IRN stimuli, cor-
responding to five levels of attenuationbetween �16 and
0 dB, was presented 10 times in random order across listeners.
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Thus, each listener completed a total of 150 judgments (5 atten-
uation levels £ 10 repetitions £ 3 blocks). The perceived pitch
strength for each IRN was based on the average of 30 repeti-
tions (3 blocks £ 10 repetitions). Listener responses were
reviewed after the familiarization task to verify that perceived
pitch strength scores systematically varied across the attenua-
tion levels (from 0 dB or high pitch strength down to �16 dB
or low pitch strength). Following the familiarization task, lis-
teners judged the pitch strength of 30 voice stimuli varying in
signal type using the same anchored magnitude estimation
task. Each stimulus was judged 10 times in random order,
resulting in a total 300 stimuli per listener (10 stimuli £ 3 sig-
nal types £ 10 repetitions). Perceived pitch strength was aver-
aged across the 10 repetitions to obtain a single pitch strength
value for each of 30 stimuli. The entire testing spanned approx-
imately 1.5 hours. Short breaks throughout the listening ses-
sion were provided to minimize listener fatigue.
Computational estimates of cepstral peak
prominence
This study also evaluated the relationship between the ceps-
tral peak prominence (CPP) and the computational and per-
ceptual estimates of pitch strength. CPP values were
estimated for all stimuli twice using the algorithms described
by Hillenbrand et al26 and Boersma andWeenik57 (as imple-
mented in the PRAAT software).
Results
Computational estimates of pitch strength
Figure 4 depicts the signal type determined by the three judges
(abscissa) and the pitch strength estimated from the Aud-
SWIPEʹ model (ordinate). Above each signal type, the mean
(solid symbol) and standard error (bar) is shown on the left
and the individual data (open circles) are shown on the right.
A univariate analysis of variance (ANOVA) revealed a statis-
tically significant difference between pitch strength values for
the three signal types (F (2, 27) = 128.05, P< 0.001). Posthoc
Bonferroni analyses revealed that type 1 signals (mean= 0.45,
FIGURE 4. Computational estimates of pitch strength by signal
type. Error bars indicate mean § standard error (SE) and the open
symbols/markers represent the individual data and range.
standard deviation, SD= 0.06) had significantly (P< 0.001)
higher pitch strength than type 2 (mean = 0.17, SD= 0.07) or
type 3 signals (mean= 0.06, SD= 0.03) and that pitch
strength was significantly (P< 0.001) higher for type 2 than
type 3 signals.
Perceptual estimates of pitch strength
Listener reliability: Intra- (comparison across repetitions)
and inter- (comparison across listeners) listener reliability
were measured using intraclass correlation coefficients58

(for both the familiarization task and the main experiment,
as shown in Table 2. Data from one of the listeners was
excluded due to low intralistener reliability, resulting in
N = 9. Those 9 listeners were highly reliable in making per-
ceptual judgments of pitch strength in both familiarization
task and the main experiment.

Perceived pitch strength: The results of the familiarization
task (ie, perceived pitch strength) are shown in Figure 5
with pitch strength (ordinate) shown as a function of IRN
attenuation value (abscissa) by red circles (mean) and error
bars (standard error). These data indicate that listeners
were able to understand the concept of pitch strength and
provided judgments that revealed a systematic decrease in
perceived pitch strength along the continuum of IRN atten-
uation values. The blue squares and error bars in Figure 5
show corresponding values from the same task reported by
Shrivastav et al,47 indicating consistency across participant
groups. Despite using the same stimuli, measurement meth-
ods, and earphones, there were slight differences in the
mean absolute pitch strength estimates between the two
studies. Examination of the individual data for the current
study (unfilled circles) demonstrates considerable overlap
with the mean (and presumed distribution) of thresholds
reported by Shrivastav et al.47 The most parsimonious
explanation for differences among mean values across stud-
ies is simply that they reflect natural individual variation in
the respective listener’s perceptual judgments.

Perceived pitch strength judgments for the 30 voice stim-
uli are shown in Figure 6 in the same manner as the compu-
tational estimates in Figure 4. Perceived pitch strength
decreased with signal type. A univariate ANOVA was used
to examine the effects of signal type (independent variable)
on perceived pitch strength (dependent variable). The
TABLE 2.
Intra- and Interlistener Reliability for Perceived Pitch
Strength Described by Intraclass Correlation, ICC (2, K)

Reliability

Intralistener

(Mean § SD)

Interlistener

(Mean)

Familiarization task 0.983 § 0.011 0.933

Main experiment 0.985 § 0.003 0.960

For intralistener reliability, K = 30 repetitions for the familiarization task

and 10 repetitions for the main experiment. For interlistener reliability,

K = 10 listeners.

Abbreviation: SD, standard deviation.



FIGURE 5. Results of the familiarization task using IRN stimuli.
Perceived pitch strength is on the y axis and the IRN attenuation
value is on the x axis. Symbols/markers indicate mean perceived
pitch strength using the anchored magnitude estimation task for
the current study (circles, bars show standard error, SE) and data
from (squares).47
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Levene’s F test revealed unequal variances in perceived pitch
strength (F = 4.993, P= 0.007). Therefore, a Welch’s F test
with an alpha level of 0.05 was used. There was a statisti-
cally significant main effect of signal type on pitch strength
judgments (Welch’s F (2,175.97) = 339.59, P< 0.001), indicat-
ing that perceived pitch strength differed among the three
signal types. Posthoc comparisons, using Games-Howell
posthoc procedure was conducted to determine which pairs
of signal types differed significantly. All pair-wise compari-
sons were significantly different (P< 0.001).
Relationship between computational and perceptual
estimates of pitch strength
The computational estimates of pitch strength obtained with
the Aud-SWIPE0 model were compared to the perceptual esti-
mates of pitch strength for the same type 1, 2, and 3 voice
stimuli. There were significant correlations (Pearson’s r)
between the perceptual and computational estimates for each
signal type (type 1: r= 0.76; P= 0.01; type 2: r= 0.65; P= 0.04;
FIGURE 6. Perceptual estimates of pitch strength by signal type.
Error bars indicate Mean § standard error (SE) and the open sym-
bols/markers represent the individual data and range.
type 3: r= 0.89; P= 0.001), illustrating the potential utility of
these computational estimates in voice analyses.
Relationship between pitch strength and CPP
estimates
Computational estimates of pitch strength and of CPP
decreased as signal type increased as expected, reflecting an
overall decrease in periodicity from type 1 to type 3. This
resulted in strong negative correlations between signal type
and computational estimates of pitch strength (PS=�0.93,
P< 0.001) and between signal type and CPP (PRAAT=�0.81,
P< 0.001; HB=�0.60, P< 0.001). The relationship between
computational estimates of pitch strength and CPP, as well as
perceptual estimates of pitch strength and CPP, are shown in
Table 3. Overall, Pearson’s r correlations were moderate to
strong across all signal types and the strength of the correla-
tions varied slightly depending on the CPP algorithm. Because
pitch strength and CPP should decrease with a decrease in peri-
odicity, one would expect that the correlation among computa-
tional measures should not change much with signal type.
Surprisingly, however, for type 3 voices, there was a negative
correlation between CPP estimates from Hillenbrand et al26

and both computational and perceptual estimates of pitch
strength. In fact, the correlation between CPP estimates from
Hillenbrand et al26 and PRAAT are similarly negative for type
3 voices (not shown in Table 3).
Discussion
The purpose of this experiment was to determine the rela-
tionship between voice signal type and perceptual and
computational estimates of pitch strength. Computational
estimates of pitch strength significantly and monotonically
decreased with signal type (ie, as the signal aperiodicity
increased), confirming our hypothesis. Similar to the
computational estimates, perceived pitch strength decreased
systematically with signal type.

Unlike f0 based algorithms, which increasingly fail with
type 2 and 3 voices, pitch strength can be estimated from voi-
ces of all signal types. Furthermore, these results reveal that
pitch strength can differentiate all signal types, similar to the
nonlinear dynamic metrics such as D2 and rate of diver-
gence.12,13 The utility of pitch strength estimates in evaluating
dysphonic voices was demonstrated previously using different
types of synthetic stimuli (varying in level of aspiration noise,
open quotient, and the combination of both) and natural dys-
phonic stimuli.39 For both stimulus types, the relationship
between pitch strength estimates and perceived breathiness
revealed correlations ranging from 0.82 to 0.97 (Pearson’s r).
Stimuli with lower pitch strength values were perceived to be
higher in breathiness. Here we show that automated computa-
tional pitch strength estimates can be used to characterize
severely disordered type 2 and 3 voices where most conven-
tional acoustic analyses fail primarily due to limited periodic-
ity. These results also are consistent with studies that have
evaluated pitch strength on a continuum of stimuli including
nonspeech tonal complexes and noise stimuli.45 Per signal



TABLE 3.
Relationship Between CPP (dB) and Computational and Perceptual Pitch Strength Estimates (Pearson’s r[Significance])

Computational Pitch Strength Estimates vs CPP Perceptual Pitch Strength Estimates vs CPP

Signal Type Hillenbrand et al26 PRAAT Hillenbrand et al26 PRAAT

Type 1 0.525 (P> 0.05) 0.535 (P > 0.05) 0.765 (P = 0.010) 0.600 (P > 0.05)

Type 2 0.713 (P = 0.02) 0.739 (P = 0.02) 0.516 (P > 0.05) 0.729 (P = 0.017)

Type 3 �0.328 (P > 0.05) 0.403 (P > 0.05) �0.400 (P > 0.05) 0.610 (P > 0.05)
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typing and CPP, Stone et al10 reported a strong, negative cor-
relation between signal typing and CPPS (smoothed version
of CPP) value of /a/ (r=�0.85, P< 0.001); participants with
type 3 and 4 signals had lower CPPS values. The results of the
current study are consistent with those of Stone et al10 Of the
three methods (pitch strength, CPP from Hillenbrand et al,26

and CPP from PRAAT), the correlation value (correlation
with signal type) was highest for pitch strength estimates
(r=�0.93, P< 0.001), providing evidence that pitch strength
estimates may be better at characterizing signal types than
CPP.
EXPERIMENT 2: SIGNAL TYPE AND PITCH HEIGHT
Experiment 2 was designed to determine whether computa-
tional and perceptual estimates of pitch height associated with
individual voice segments could be used to successfully char-
acterize type 1, 2, and 3 voice signals. Based on the fact that
pitch height can be judged for a wide range of periodic and
aperiodic stimuli,47 Experiment 2 tested the hypothesis that
type 2 and 3 signals elicit a pitch height that can be reliably
estimated through perceptual and computational measures.
Methods
Computational estimates of pitch height
The Aud-SWIPE0 algorithm49 was used to compute the
pitch height values for the 30 stimuli (10 per signal type). A
detailed description of the algorithm and its use for estimat-
ing pitch height is provided in Experiment 1 methods. In
addition to an estimated pitch value from the Aud-SWIPEʹ,
f0 estimates were computed from the TF32 and PRAAT
software applications. TF32 estimates f0 using linear predic-
tive coding, with voicing decisions based on zero crossings
and signal amplitude. Additionally, crosscorrelation analy-
sis is used to reduce formant artifacts. PRAAT estimates f0
from multiple steps. First, a normalized autocorrelation
function is used. The autocorrelation of the windowed sig-
nal is then divided by the autocorrelation of the window
itself. Next, a ‘sin x/x’ interpolation is used. Finally, multi-
ple pitch candidates are compared (default number is four),
removing potential octave errors.
Perceptual estimates of pitch height
Listeners, stimuli, and instrumentation: All were identical to
those of Experiment 1 except for software. In this experi-
ment, MATLAB was used to present stimuli.
Procedure: Prior to the single-variable matching task of
Experiment 2, listeners completed a short training task that
mirrored the main experimental task but with a different set
of stimuli. On each trial, listeners were presented with two
sounds—a reference sound and a comparison sound. For the
training task, a total of four reference sounds were selected;
two natural dysphonic /a/ phonations and two clarinet
sounds. For the main experiment, the reference sound was
one of 30 stimuli that varied in periodicity. The comparison
sound was a sawtooth tone with variable f0 up to 4000 Hz.
Pitch height was operationally defined as the fundamental fre-
quency of this sawtooth, in units of cycles per second or Hertz
(Hz).59 For both sets of stimuli, listeners were instructed to
increase or decrease the f0 of the comparison sound (single-
variable parameter) such that the perceived pitch of the com-
parison sound approximated the perceived pitch of the refer-
ence sound. The initial f0 of the comparison sound was
randomly chosen over the range of 50−500 Hz. The fre-
quency of the comparison sound was varied according to the
listener response in steps of 50, 20, and 2 Hz and the final
pitch match value was based on the average of three separate
pitch matches for each stimulus. The reference sounds were
presented in random order across listeners. The entire testing
duration was approximately 1 hour.
Results
Computational estimates of pitch height
The mean pitch height values for each voice stimulus esti-
mated from the Aud-SWIPEʹ model are shown in column 2
of Table 4 for the type 1 signals along with the f0 values pro-
duced by the TF32 algorithm (third column) and the
PRAAT algorithm (fourth column). Columns five, six, and
seven show differences among the three estimators. For
most of the type 1 signals, estimates of pitch height from the
Aud-SWIPE0 algorithm and estimates of f0 from the two
commonly used algorithms were in close agreement (differ-
ences ranged from 0 to 6.3 Hz). Correlations among the
methods were each r= 0.9997, P< 0.001).

The mean pitch height and f0 values for type 2 voices are
shown in Table 5 in the same manner as for type 1 voices in
Table 4. It is clear from the difference values that there is
considerable discrepancy among algorithms (differences
ranged from 0 to 76 Hz). The correlations among methods
for these type 2 voices remained high, however, ranging
from r= 0.94 to r= 0.97. The results for type 3 voices
(Table 6) reveal even greater absolute differences among



TABLE 4.
Computational Estimates of Mean Pitch Height and f0 for type 1 Signals Measured From three Algorithms as well as the
Difference Between Each Pair of Algorithms

Measure Mean Results (Hz) Subtraction of Means (Hz)

Algorithm Aud-SWIPE’ TF32 PRAAT Aud-SWIPE’-TF32 Aud-SWIPE’-PRAAT TF32-PRAAT

Signal Type/Voice Stimulus Mean Mean Mean Diff Diff Diff

Type 1_Stimulus 1 117.2 117.3 117.3 �0.1 �0.1 0

Type 1_Stimulus 2 133.1 135.5 135.5 �2.4 �2.4 0

Type 1_Stimulus 3 91.1 91.1 91.1 0.0 0.0 0

Type 1_Stimulus 4 92.7 92.8 92.9 �0.1 �0.2 �0.1

Type 1_Stimulus 5 102.9 102.9 102.9 0.0 0.0 0

Type 1_Stimulus 6 100.9 100.9 100.8 0.0 0.1 0.1

Type 1_Stimulus 7 93.7 93.8 93.8 �0.1 �0.1 0

Type 1_Stimulus 8 165.4 168.1 168.1 �2.7 �2.7 0

Type 1_Stimulus 9 174.2 180.5 180.5 �6.3 �6.3 0

Type 1_Stimulus 10 88.3 88.4 88.3 �0.1 0.0 0.1

Abbreviation: Diff, difference.

TABLE 5.
Computational Estimates of Mean Pitch Height and f0 for type 2 Signals Measured From three Algorithms as well as the
Difference Between Each Pair of Algorithms

Measure Mean Results (Hz) Subtraction of Means (Hz)

Algorithm Aud-SWIPE’ TF32 PRAAT Aud-SWIPE’-TF32 Aud-SWIPE’-PRAAT TF32-PRAAT

Signal Type/Voice Stimulus Mean Mean Mean Diff Diff Diff

Type 2_Stimulus 1 129.0 137.4 135.5 �8.4 �6.5 1.9

Type 2_Stimulus 2 236.4 224.6 269.5 11.8 �33.1 �44.9

Type 2_Stimulus 3 82.5 93 106.6 �10.5 �24.1 �13.6

Type 2_Stimulus 4 108.4 108.6 108.4 �0.2 0.0 0.2

Type 2_Stimulus 5 173.2 179 178.8 �5.8 �5.6 0.2

Type 2_Stimulus 6 186.8 196.2 194.6 �9.4 �7.8 1.6

Type 2_Stimulus 7 78.9 91.9 94.7 �13.0 �15.8 �2.8

Type 2_Stimulus 8 105.7 138.3 110 �32.6 �4.3 28.3

Type 2_Stimulus 9 127.8 161.2 204.1 �33.4 �76.3 �42.9

Type 2_Stimulus 10 239.0 255.8 253.6 �16.8 �14.6 2.2

Abbreviation: Diff, difference.
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algorithms (ranging from 0 to 330 Hz when values could be
estimated). The correlation between values estimated by the
Aud-SWIPEʹ and the TF32 algorithms (for the 9 of 10 stim-
uli for which values could be obtained by TF32) was
r= 0.54 and was not computed for the PRAAT algorithm
due to the missing data associated with the failure of that
algorithm to identify a f0 candidate.

While conventional software was unable to measure f0 for
many of the aperiodic type 3 signals, the Aud-SWIPE0 algo-
rithm was able to provide pitch height estimates for all stim-
uli within a range of values that is plausible for the given
stimuli. Figure 7 illustrates the performance of each of the
algorithms by showing the pitch height trace from Aud-
SWIPE0 and f0 traces from TF32 and PRAAT software for
a sample stimulus from each of the three signal types. The
quality of the traces for the three signal types is consistent
with the differences and correlations from Tables 4−6. It is
evident that for type 1 signals, the pitch height and f0 traces
were in close agreement and were consistent over time. For
type 2 signals, computational estimates of f0 using TF32
and PRAAT were less consistent than for type 1 signals
while the pitch height estimates from Aud-SWIPE0 were
more consistent over time. For type 3 signals, while f0 could
not be estimated using either TF32 or PRAAT for the cho-
sen voice, Aud-SWIPE0 was able to produce a consistent
and moderately robust pitch height estimate. Although
Aud-SWIPE0 was able to track “pitch height” for some por-
tion of the voice stimulus for all talkers in the current experi-
ment, the accuracy of this measurement will need to be
validated against perceptual data.
Perceptual estimates of pitch height
To keep the number of listeners in this experiment consis-
tent with that of Experiment 1 (perceived pitch strength),
the same listener was excluded from analyses of this



TABLE 6.
Computational Estimates of Mean Pitch Height and f0 for type 3 Signals Measured From three Algorithms as well as the
Difference Between Each Pair of Algorithms

Measure Mean Results (Hz) Subtraction of Means (Hz)

Algorithm Aud-SWIPE’ TF32 PRAAT Aud-SWIPE’-TF32 Aud-SWIPE’-PRAAT TF32-PRAAT

Signal Type/Voice Stimulus Mean Mean Mean Diff Diff Diff

Type 3_Stimulus 1 76.6 155.8 92.7 �79.2 �16.1 63.1

Type 3_Stimulus 2 77.9 0 * 77.9 † †

Type 3_Stimulus 3 56.2 97.7 161.3 �41.5 �105.1 �63.6

Type 3_Stimulus 4 52.6 44.1 * 8.5 † †

Type 3_Stimulus 5 45.4 57.3 * �11.9 † †

Type 3_Stimulus 6 275.0 152.6 299.3 122.4 �24.3 �146.7

Type 3_Stimulus 7 83.4 171.7 245.5 �88.3 �162.1 �73.8

Type 3_Stimulus 8 97.7 73.6 97.9 24.1 �0.2 �24.3

Type 3_Stimulus 9 157.1 255.6 157.4 �98.5 �0.3 98.2

Type 3_Stimulus 10 59.3 66.8 389.4 �7.5 �330.1 �322.6

* For some voice stimuli, PRAAT was unable to produce a f0 trace (results = “undefined’).
† Unable to calculate because of “undefined” PRAAT results.

Abbreviation: Diff, difference.

FIGURE 7. Pitch height or fundamental frequency (f0) traces for a sample voice representative of type 1, 2, and 3 signals. For each signal
type, pitch height estimated from Aud-SWIPE’ or f0 estimated from PRAAT, TF32 software is depicted on y axis. For type 3 signal, f0 esti-
mates that could not be measured are indicated as (undefined).
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experiment. Nine listeners matched the perceived pitch
height of type 1, 2, and 3 signals with good accuracy.
Figure 8 shows the perceived pitch height/pitch match (ordi-
nate) of each of the 10 stimuli (abscissa) for all signal types
(separate panels) in terms of the mean (symbols) and stan-
dard error (bars) of the pitch height judgments across nine
listeners. The data reveal a wide range of perceived pitch
height across the 10 stimuli for each signal type. The vari-
ability across listeners, however, differed among signal types
(Levene’stest of Homogeneity, P= 0.004). Multiple compar-
isons revealed that variance was greater for type 3 than type
1 signals with no significant difference between type 1 and
type 2 or type 2 and type 3 signals.
Relationship between computational and perceptual
estimates of pitch height
Correspondence between computational estimates derived
from Aud-SWIPE0, TF32, and PRAAT and the perceptual
estimates of pitch height from listeners were evaluated using
Pearson’s r correlation coefficients. For type 1 voices, the
correlation between computational estimates of pitch height,
f0, and the listener judgments were strong (remarkably, the
three pairwise correlations each were r > 0.88; P= 0.001).
For type 2 voices, there were significant but lower correla-
tions with listener judgments (ranging from r= 0.65 to 0.77;
P= 0.001). For type 3 voices, computational estimates of
pitch height from Aud-SWIPE0 were significantly correlated
with listener judgments (r= 0.75; P= 0.01) but not f0 esti-
mates (P> 0.05).
Discussion
The purpose of this experiment was to determine the rela-
tionship between signal type and perceptual and computa-
tional estimates of pitch height. The Aud-SWIPE0

algorithm resulted in pitch height values for all stimuli irre-
spective of signal type, while conventional f0 estimators
(TF32 and PRAAT) failed to converge consistently on an
estimate for type 2 and type 3 signals. The behavioral data
revealed that listeners can judge the pitch height of type 1,
2, and 3 voice signal types with high consistency, even when



FIGURE 8. Perceptual estimates of pitch height for each of the 10 stimuli per signal type. Error bars indicate Mean§standard error (SE).
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these signals may not provide reliable estimates of f0 due to
lack of periodicity (eg, type 2 and 3).

The SWIPE algorithm described by Camacho and Harris60

estimates pitch height as the as the f0 of the sawtooth wave-
form whose spectrum best matches the spectrum of the input
signal (dysphonic voice). Thus, it explicitly does not base
pitch height on the f0 of the stimulus under study. Prior
research has shown that SWIPE outperformed multiple algo-
rithms in predicting the pitch of both normal and disordered
voices.60 Here, pitch height was estimated using an enhanced
version of this model in which signal is preprocessed with a
signal processing front-end that mimics processing by the
auditory periphery (Aud-SWIPE0). Data from this experi-
ment support the notion that pitch, purely a perceptual phe-
nomenon, does not require the presence of a periodic
acoustic signal. Thus, an auditory inspired model of pitch
perception can accurately predict human pitch perception
even when computational estimates of f0 occasionally fail.
GENERAL DISCUSSION
Despite the widespread use of acoustic analysis routines to
characterize or quantify voices, their use is limited to the sub-
set of voices that have some degree of periodicity (type 1).
However, a large number of dysphonic voices, particularly
those that are perceived to be most severely dysphonic, are
characterized by subharmonics (type 2) or aperiodic sources
(type 3), rendering many conventional analysis techniques
inaccurate or simply invalid. For such voices, clinicians and
researchers are often limited to the use of perceptual judg-
ments such as descriptions of sound quality or visual judg-
ments of their spectrogram. Such measurements create other
challenges, including issues around poor accuracy and reli-
ability of measurements, replicability, or speed of measure-
ment. In the last decade, measures or indices of dysphonia
severity calculated from the spectral or cepstral domain have
gained popularity, partly because these demonstrate greater
robustness to the lack of periodicity in acoustic signals. How-
ever, these measures also lose sensitivity to changes in vocal
signals when voices have aperiodic sound sources. Analytical
methods using nonlinear approaches show promise in differ-
entiating amongst the three types of vocal acoustic signals,
but these have made limited inroads in routine clinical care
or research.
The current study demonstrates a different approach to
characterize and quantify vocal acoustic signals that can be
applied to all voice types, from the primarily periodic (type 1)
signals to the most aperiodic (type 3) signals. These measure-
ments can be made using a typical acoustic recording, and
require no additional hardware than is commonly used for
conventional acoustic analyses of voices. The primary differ-
entiation between this approach and conventional acoustic
analyses is the use of perceptual judgments or psychoacoustic
attributes of sound (pitch and pitch strength) as the basis of
measurement instead of using a physical attribute (f0) of the
waveform. Since all sounds, irrespective of their periodicity,
have a stable percept of pitch height and pitch strength,
computational estimates of these attributes can serve as
another way to describe and quantify dysphonic voices.

Given that many dysphonic voices are aperiodic in nature,
such measurements can directly help quantify these voices or
be used indirectly such as in supporting the selection of other
acoustic measures that maybe appropriate for a particular
voice. For example, voices can be characterized by describing
their pitch values, even when these do not have a clear f0
associated with the waveform. Similarly, pitch strength val-
ues can be useful for differentiating voice types, or segments
of steady phonation that are likely to represent types 1, 2, or
3, phonation. Once computed, the relative proportion of type
1, 2, or 3 segments may itself serve as a measure of dyspho-
nia. Dysphonic voices characterized by predominately type 1
segments may be closer to “normal” phonation than those
which have a greater presence of type 2 and 3 segments.8

Such segmentation can also help improve the use of other
acoustic measurements, such as by limiting the calculation of
specific acoustic measurements only to those segments where
a particular analysis is likely to be valid and accurate.

Even voices with nonlaryngeal sources, such as in adult and
pediatric patients with glottic and supraglottic cancer or lar-
yngotracheal stenosis could benefit from the use of these
methods. Note that such conditions often lead to significant
reconstructive surgery, resulting in supraglottal voice source
(s) and voice source characterized as chaotic. Indeed, several
research studies in such populations have demonstrated the
predominance of type 2 and 3 aperiodic signals and descrip-
tion of these voices are typically limited to perceptual evalua-
tion of voice quality. For example, over 60% of patients with
tracheoesophageal speech have been reported to have
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aperiodic voices.5,6 Similar results were reported for adult
patients with early glottic cancer (type 2 and 3 signals in 13/14
patients10; and stenosis (type 2 and 3 signals in 11/11 patients,7

as well as pediatric patients postairway reconstruction.61−63

Only 32% of samples were deemed suitable for conventional
acoustic analysis in Brehm et al61 and 20/21 children were
observed to have aperiodic voices in Kelchner et al.63

While these still need to formally evaluated, using percep-
tually-motivated approaches for signal analysis may offer
several other advantages. First, these can easily be extended
to connected speech,64 and are likely to be more robust to
signal degradation, such as due to environmental noises.
Second, these may also be more robust to differences in
hardware (eg, differences in microphone type or location),
as well as certain software or recording differences (eg,
audio signal compression) than many other acoustic meas-
ures of voice. Together, the use of pitch height and pitch
strength for characterizing voices can open new possibilities
for voice analyses including automated analyses of long seg-
ments of speech and the analyses of field recordings using
lower cost audio recording systems. To improve upon this
work, future investigations might distinguish between type 3
and 4 signals,2,65 use nonlinear dynamic analysis methods
to characterize the vocal signal, and attempt to fully auto-
mate the signal typing method using pitch strength estimates
in conjunction with pitch height and spectral metrics.
CONCLUSIONS
Existing methods for acoustic analysis of voices are limited to
signals that are primarily periodic. While signal typing is rec-
ommended as an essential first-step in the analyses of dys-
phonic voices, this is often ignored. When it is conducted, the
subjective approach is error-prone without extensive training
and is tedious to complete. This study demonstrates the util-
ity and success of pitch-based measures (pitch height and
pitch strength) derived from the acoustic signal to character-
ize a wide range of dysphonic voices, and to differentiate
among voice stimuli that vary across signal types. The
computational and perceptual estimates of pitch strength
were highest for the periodic, type 1 signals and lowest for
the aperiodic, type 3 signals. Computational and perceptual
estimates of pitch height could be evaluated for all signal
types irrespective of periodicity. Pitch-based computational
metrics are universally applicable to all dysphonic voices,
and can be a valuable tool for clinicians and researchers.
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